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Abstract

The random networks that are formed in typical elastomer cure or cross-linking reactions obey the statistics of local chemical reactions, but

it is the long-range, and not the local, properties of the structures that determine their desirable material properties. Properties such as the gel

point and cycle rank are determined by the global structure of a network. Forging a connection between local statistics and global structure

has been a challenging problem. Tracking the evolution of random structures during the course of cross-linking reactions has been the object

of a considerable body of theoretical research. However, much of this research has ignored the space-filling requirements of the resulting

statistically branched structures. As especially emphasized by Gordon and co-workers, the chemical structures that are formed in typical

cross-linking reactions can be understood within the context of graph theory. However, a pure mathematical graph has no metrical

information, which means that any information on the embedding of the graph in three-space will be impossible to infer from the graph alone.

Here it is shown that one can introduce physically meaningful metrical information on the graph structure by imposing a spatial distribution

of cross-links and chains from the beginning. This ensures that the resulting statistical networks are capable of being embedded in the space

of that generates the distribution.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A polymer network consists of molecules or chains that

are bonded together by cross-linkages into a larger structure.

Depending on the application, the resulting branched

structures may consist of many chains, yet fall short of

being macroscopic. Dendrimers, microgels, and hyper-

branched polymers are interesting examples of branched

molecules of this class. Some of these molecules may be a

preliminary stage on the way to formation of a truly

macroscopic network. Except for dendrimers, these struc-

tures share a common structural feature—the pattern of their

connectivity or topology cannot be predicted except by

statistical means.

The language of mathematical graph theory provides a

convenient description of network structure, and further

allows one to borrow results from the mathematical

literature for application to the chemical problem. The

correspondence is well known: chains are the edges of a

graph and the cross-links are its vertices. A graph is a set of

vertices, VZ{v1, v2,.,vm}, together with an incidence
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EZ
vi1 vj1 / vn1
vi2 vj2 / vv2

� �

that associates the vertices in pairs. (Chain ends are counted

as vertices in this mapping.) It is not difficult to convince

oneself that this abstract information suffices to describe the

basic topology of any network. However, the physical

problem may also require associated information to be

relayed with the graph, such as the molecular weights of the

chains/edges, the chemical structure of the chains and cross-

links, the length or length distribution of the chains, and so

on. It is not difficult to append information of this sort to a

graph of a given structure, so as to describe its chemistry in

as much detail as desired.

The basic insight into the structure of networks was

provided by Flory [1] in his seminal discovery that the gel

condition could be determined very simply by asking for the

expected number of chains that emanate from a randomly

selected cross-link that is connected to a chain. When this

number of continuing chains equals or exceeds unity, there

is a finite probability that a path of chains will continue to

infinity. This suffices to define the gel point. His elegant
Polymer 46 (2005) 4258–4264
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calculation introduced the salient features of the graphical

structure of a network, and in one figure [1] he further

planted the seed for what was to become the powerful

application of cascade theory to branching processes by

Gordon and co-workers [2,3].

This theory of network formation, in which the structures

are first approximated as acyclic trees, has been elaborated

and improved upon in scores of publications. Notable is the

work of Stockmayer [4,5], Gordon [2,3], Dusek [6–8],

Stepto [9,10], Miller and Macosko [11], and others too

numerous to mention. One of the principle themes of the

later work has been to correct the theory for the formation of

cycles, which at the very least, lead to ‘wasted reactions’

with subsequent delay of the gel point. However, the

corrections that have been offered to date have generally not

included the whole array of cycles that can form, and many

treatments do not attempt to count the number of cycles of

all sizes that can form. This is a formidable task, but one

which would give a complete solution to the network

structure problem if it were to be solved.

A principle deficiency in the branching theory, regardless

of its formulation, is implicit in the graph used to represent

the physical system. It is that no metrical information is

inherent in the statistical model. To develop the statistical

description of networks that include cycles, one needs this

metric information—the probability for formation of a

closed cycle depends critically on the embedding of the

model system in an ambient space, most usually the three-

dimensional Euclidean space R3. This is precisely the

reason for performing computer simulations—the embed-

ding of the cross-links and chains in space can be imposed in

a physically meaningful way to influence the formation of

cyclics [12–16].

In this paper, an attempt is made to formulate a statistical

model that captures this embedding without the intervention

of computer modeling. It proceeds by using the essential

features of branching or cascade theory—that one can

associate a network structure with a directed graph (digraph)

with an embedding that depends on metrical distance rather

than graphical path length. This solves one problem, but

naturally opens up several others. Hopefully the method will

prove useful.
2. Review of branching theory

The statistical problem in branching or cascade theory is

best described with a rooted tree. A tree is a graph with no

circuits, i.e. in a connected tree there is a single, unique,

shortest path from every vertex to every other vertex. A

rooted tree has one distinguished vertex called the root.

Given a tree, potentially infinite in size, select a root vertex

near the center of the structure. This vertex has at most F

edges emanating from it, and may have fewer. A vertex that

is connected to the root by k edges is said to be a member of

the kth generation. Consider the case where all vertices
represent identical chemical cross-linkages, so that all

vertices have the same maximum degree F. Let the expected

number of edges connected to the root be aF. The vertices at

the ends of this first generation of edges can generate a(FK
1) edges, those in turn are capable of generating a(FK1)

edges, and so on. The ratio of the number of vertices in the

(iC1)st generation to those in the ith is a(FK1). When this

number equals or exceeds unity (for all i), there is a finite

probability that a path to infinity exists. This is the Flory gel

point [1].

The number of edges, jEjN, in the tree of N generations is

easily seen to be

jEjN ZaFCaF½aðFK1Þ�CaF½aðFK1Þ�2 C/

CaF½aðFK1Þ�NK1

ZaF
½aðFK1Þ�N K1

½aðFK1Þ�K1
(1)

lim
N/N

jEjN ¼
aF

1KaðFK1Þ
; for aðFK1Þ!1

Just at the gel point, a(FK1)Z1, there is a linear growth in

the number of edges with the number of generations.

However, if a(FK1)O1, there is an exponential explosion

in the number of vertices. Clearly, just past the gel point the

trees that conform to these statistics cannot be embedded in

R3 with a physically realistic density of chains and cross-

links.

The number of vertices in the last generation is the last

term in the sum, and the total number of vertices in the tree

is just one more than the number of edges, giving the ratio of

the number of vertices in generation N to the total number of

vertices as

1K
1

½aðFK1Þ�

for large N. For a 3-valent tree, e.g. aZ1 and FZ3, all

vertices except those in the last generation have three

neighboring vertices, and fully one half of the vertices are in

the last generation, and it gets worse as the junction

functionality increases.

Cyclization has to be invoked to attenuate the growth of

statistically branched structures. A chain that closes a cycle

clearly cannot generate off-spring in the next generation,

which obviously reduces the number of edges that can be

emerge from that generation. Several theories to incorporate

cyclization in one or another approximation have been

formulated. One of the earliest of these treatments in the

context of Cascade Theory was made by Dusek, Gordon,

and Ross-Murphy [3]; much later is the work of Dušek et al.

[6] who treat hyperbranched molecules where only one ring

can form. The theory of Ahmed, Rolfes, and Stepto [10,17]

accounts for cycles of any size, but does not provide



B.E. Eichinger / Polymer 46 (2005) 4258–42644260
information on the length of the cycles that are formed. The

work of Lang, Goritz, and co-workers [18–20] utilizes both

analytical theory and computer simulations to investigate

the probability of cyclization, and furthermore reports the

distribution of cycle sizes.

The statistical theory aside, Flory pointed out long ago

that in a typical elastomer there is very little correlation

between the spatial neighbors and topological neighbors of a

given cross-link. This follows easily from a simple

calculation of the average number of cross-links that lie

within the average volume pervaded by a single chain, given

the typical stoichiometry of cured elastomers. However, if

one considers cross-links that are separated by a great

distance in the elastomer, it must surely be the case that, on

the average, the shortest path of chains from one to the other

traverses a number of chains that grows in proportion to the

distance of separation between the cross-links. That is, at

large spatial separations, the correlation between spatial

distance and topological distance (number of generations)

grows stronger. The expected number of topological

neighbors at a large distance r from a given cross-link is

therefore expected to grow as the volume of a spherical shell

of radius r. This implies that the exponential growth of the

branching theory must be completely suppressed and

replaced by polynomial growth. This is very difficult, if

not impossible, to do with a treatment that is based on

branching statistics. This problem has motivated develop-

ment of computer models [12,21,22] that incorporate spatial

information, i.e. begin with an embedding of chains and

cross-links in R3, and which allow for the formation of

networks while obeying physically realistic embedding

principles. Here an analytical treatment is presented that

complements the computer simulations.
3. Basic constructions

The critical feature of branching theory that makes it so

effective is that it is based on directed graphs (conveniently

called digraphs), i.e. graphs with a direction assigned to

each edge. This assignment is implicit in the sequence of

generations—each edge can be assigned a direction from the

parent to the off-spring. Happily, this feature can be retained

in graphs embedded in Rd by directing edges out from a root

vertex, conveniently chosen to lie near the geometrical

center of the structure, such that the edge that connects two

vertices that are at distances r1 and r2 from the root are

joined by an edge that is directed from min(r1, r2) to max(r1,

r2). This notion, combined with generating functions

borrowed from cascade theory, provide tools that enable

several statements to be made about the statistics of

embedded graphs.

Consider an ensemble of digraphs, each containing m

vertices and n edges in a volume V. The mean density of

vertices is mZm/V, and ultimately it will be assumed that

the local density of vertices is independent of position.
Given a root near the geometrical center of the graph, let the

number of vertices in a volume element at a distance r from

the root beM(r)dr, so that the number in the spherical shell,

Sr, a distance r from the root is M(r)4pr2drZM(r)4pr2dr.
(At this point it may be noted that the entire treatment can be

generalized to spaces of any dimension d, not necessarily

integral. However, the discussion will be restricted to dZ3.)

This set of vertices is further subdivided into those with in-

degree k and total degree or valence f, denoted M
f
kðrÞ. The

vertices model cross-linkages that can be attached to a

maximum of F chains; a given vertex may be attached to f!
F edges owing to incomplete chemical reaction.

Define three additional probability distribution functions.

First, W(r)dr is the a priori probability distribution of the

end-to-end vector of a chain in the network. To keep the

nomenclature from becoming too burdensome, we will take

all chains to have the same molecular weight. Further let

P(r) be the probability that a chain that has one end in the

spherical shell a distance r from the root has its other end in

the ball B3
r . (The ball B

3
r is the inside of the sphere of radius

r.) Then Q(r)Z1KP(r) is the probability that the other end

lies in the complement of B3
r , denoted by R3=B3

r . In other

words, select vertex at random at a distance r from the root.

The probability that an edge connected to it will be directed

inward is P(r), and the probability that it will be directed

outward is Q(r). Let p be the probability that an edge is

attached to one of the F functions of the vertex, and qZ1K
p is then the probability that the function has not reacted.

The edges attached to a given vertex are assumed to be

uncorrelated. The generating function for configurations at a

vertex selected at random, �gðrÞF , is just

�gðrÞF Z fp½PðrÞCQðrÞ�CqgF (2a)

Written out, this is

�gðrÞF Z
XF
fZ0

F

f

 !
pf ½PðrÞCQðrÞ�f qFKf

Z
XF
fZ0

Xf
kZ0

F

f

 !
f

k

 !
pf PðrÞkQðrÞfKkqFKf (2b)

The terms containing pf give the total probability that a

vertex will have f edges attached (degree f), and the term

with pfP(r)k is the probability that a vertex has simul-

taneously total degree f and in-degree k. Thus,

M
f
kðrÞZ

m

V

� � F

f

 !
f

k

 !
pf PðrÞkQðrÞfKkqFKf (2c)

which treats all chains and reactive sites on cross-linkages

as distinguishable.

The immediately appealing feature of this construction is

that a vertex in Sr that has in-degree kZ2 looks like it closes

a cycle! This is so because the other ends of the two directed

edges that are incident on this vertex originate in a smaller

volume, and those are attached to edges that themselves



Fig. 2. Illustrating construction of the generating function for a cluster of

two vertices connected by a chain. The figure is drawn for r12Zr2Kr1O0.
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originate in a smaller volume, and so on, until the edges are

found that are attached to the same vertex. Unfortunately,

the in-degree kR2 vertices do not, in general, count circuits

because, at the very least, there are secondary roots in B3
r

that may have all but one edge lying in the R3=B
3
r . Fig. 1

shows a configuration on the left with closure of a circuit,

while on the right is a configuration where an in-directed

edge in Sr is attached to a vertex that has zero in-degree.

While the vertex in Sr might be a member of a circuit, it is

not the critical link that closes the circuit like the vertex on

the left does. This observation suggests a further definition.

There are four classes of vertices that distinguish

themselves as being important in the analysis. The first

class consists of those vertices that have no attached edges.

This class is denoted by CE, the subscript denoting empty.

Class CI has in-degree zero; vertices in this class comprise

the root and all secondary roots (such as on the right in Fig.

1). Class CT has out-degree zero. A vertex in this class has

no paths into R
3=B3

r . Finally, all other vertices are in class

CC; they have in-degree at least one and out-degree at least

one. Vertices of this class are the basis for a Flory

calculation of the gel point.

The generating functions for the various classes of

vertices are easy to write down.

The generating function for all vertices except those that

are unreacted is

gFðrÞZ fp½PðrÞCQðrÞ�CqgF KqF (3)

and all others are derived from this one by inspection. As

before, terms in these functions containing pf give the

probability that a vertex selected at random in Sr has f edges

attached.

Generating functions (gf) for higher order clusters are

likewise straightforward to write down. The gf for two

vertices connected by a chain (Fig. 2), is

gFK1ðr1ÞpWðjr1 Kr2jÞpg
FK1ðr2Þ (4)

without regard for the relative magnitudes of r1 and r2. In
Fig. 1. The graphical fragment A (left) has a vertex in the shell at r, and this

vertex closes a cycle. On the right (part B) the vertex in the shell is directly

connected to a vertex of CI, and hence does not close a circuit. However,

this vertex could belong to a cycle that is closed by a vertex in a larger shell.
this equation, the factor gFK1(r1)pW(jr1Kr2j) is the a priori

probability of finding a vertex in the spherical shell at r1
with at least one edge attached with probability p; the edge

gets the W(jr1Kr2j) factor, and the final pgFK1(r2)

component is the probability that the distinguished edge is

attached to another vertex of any complexion. It should be

clear that one may construct a catalog of clusters similar to

that of Walasek and Ziabicki [23].
4. Edge statistics

One would like to know something about the distribution

of edges in addition to what is provided by the gf for

vertices. One statistic that is relatively easy to construct is

the incremental flux of edges through Sr. Let N(r) be the

number of edge vectors that impinge on Sr, while N(rCdr)
is the number that emerge from Sr. Let the total out-degree

of vertices in Sr be E0(r), and the in-degree be Ei(r). It is

clear that the there are edge vectors that pass unaffected

through Sr, some that terminate there, and some that

originate there. The increment in edge vectors from Sr is

NðrCdrÞKNðrÞZ ½E0ðrÞKEiðrÞ�dr (5)

The expected out-degree and in-degree are given by

E0ðrÞ=½4pr
2ðm=VÞ� ¼ v �gðs; t; rÞF=vt

� �
js¼t¼1

¼ FpQðrÞ �gðs; t; rÞFK1 ¼ FpQðrÞ

and

EiðrÞ=½4pr
2ðm=VÞ� ¼ v �gðs; t; rÞF=vs

� �
js¼t¼1

¼ FpPðrÞ �gðs; t; rÞFK1 ¼ FpPðrÞ

where the augmented gf

�gðs; t; rÞF Z fp½sPðrÞC tQðrÞ�CqgF (6)

has been constructed to facilitate calculations. This gives

NðrCdrÞKNðrÞZ 4pr2ðm=VÞpFð1K2PðrÞÞdr (7)
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and with use of the asymptotics of P(r) for large r from the

Appendix A, one finds

dNðrÞ

dr
w4

p

g

� �1=2 m

V

� �
Fr

so that

DNðrÞw2
p

g

� �1=2 m

V

� �
Fr2 (8)

for the increment in the number of chains passing through a

large spherical shell at r owing to the cross-links that are

present in the shell. This is a consistency check, if nothing

else, showing that the cross-links in any sufficiently large

shell maintain the flux of chains that are required to fill

physical space. Eq. (7) will be interesting to study for small

r, which is not pursued here.
5. Gel point

The statistics that we are considering here encompass

both sol and gel. If one reaches into the ensemble of

structures that obey these statistics to select a single cross-

link, the probability that it will be part of the gel depends

ultimately upon the entire long-range structure of the

connected component of which it is a part. Thus, if one

happened to grab a vertex from the class CI, it may well

happen that this vertex is attached to the gel. However, the

presence of a gel is decided by the paths away from this

vertex, e.g. the selected vertex must be connected to a vertex

from CC to even be considered a viable candidate to be part

of the gel. The critical issue establishing the presence of a

gel is the occurrence of a connected path containing vertices

of class CC.

Thus one may imitate Flory [1] and ask for the expected

number of edges that emerge from vertices in the shell Sr
that are subsequently connected to vertices that are farther

from the origin.

The construction of the expectation value, EC(r), of the

number of edges per vertex that are connected at both ends

to vertices in class CC proceeds as follows. The a priori

probability for selecting a vertex of class CC in Sr is just the

gf g
f
CðrÞ from Table 1. However, to get the conditional

probability that the out-vectors, the Q(r) factors, are

connected to vertices in CC located anywhere in R3=B3
r ,

the Q(r) factors must be changed to
Table 1

Generating functions for the four classes of crosslinks

Class Generating function

CE gFEZqF

CI gFI ðrÞZ fpQðrÞCqgFKqF

CT gFT ðrÞZ fpPðrÞCqgFKqF

CC gFCðrÞZgFðrÞKgFI ðrÞKgFT ðrÞ
Q̂ðrÞZ

ð
R3=B3

r

Wðr0 KrÞp½gFK1
C ðr 0ÞCgFK1

I ðr 0Þ�dr0 (9)

The two g factors arise because there are FK1 functions

that remain on the cross-link that terminates the chain, and

the configuration of these can be of either class CC or CI.

The expectation value that we seek is readily derived

from the function

ĝFCðt; rÞ ¼ fp½PðrÞ þ tQ̂ðrÞ� þ qgF K fptQ̂ðrÞ þ qgF

K fpPðrÞ þ qgF þ qF (10)

by differentiation with respect to the auxiliary counting

variable t to get

ECðrÞZFpQ̂f½pðPC Q̂ÞCq�FK1 K ðpQ̂CqÞFK1g (11)

Now, the presence of gel is determined by the long-range

connectivity of the network, so we may calculate this

expectation value for rOr, where r is sufficiently large so

that the P(r)z1/2 to any required degree of accuracy.

(Carving out the sphere of radius r corresponds physically

to the space occupied by the ball of a falling ball viscometer,

for example.)

First we need to evaluate Q̂ for large r. Modification of

Eq. (9) above for rOr, gives

Q̂ZQp½gFK1
C ðrOrÞCgFK1

I ðrOrÞ�

ZQpf½pðPCQÞCq�FK1 K ðpQCqÞFK1g

Z
1

2
p 1K 1K

p

2

� �h iFK1

(12)

since PZQZ1/2 in this limit. The equations are now

sufficiently complicated that numerical solutions are

recommended. Fig. 3 shows the results from a simple

numerical evaluation of these equations. Plotted is the

expected number of edges that connect a vertex of class CC

in a given shell far from the origin with another vertex of the

same class that is farther from the origin. When the

expectation value exceeds one, the Flory gelation condition

is met.

It is seen from the figure that networks with maximum

functionality three do not meet the Flory gelation condition.

It should not be inferred that the method is faulty because of

this. Rather, the calculation that has been done is only a first

approximation to the gel point. In particular, paths that

backtrack from a vertex in a shell to pick up a vertex of class



Fig. 3. Expected number of chains that are capable of sustaining network growth when cross-links have maximum functionality three (lowest curve) to ten

(upper curves). The horizontal line at 1 denotes the Flory criterion; where the curves cross the line is the gel point from the first approximation as described in

the text.
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CI, whose out-vectors then contribute to the flux of chains

through the shell, can contribute substantially for small F,

and these have not been included in the above calculation

(Fig. 1 right). The calculation of the expected number of

edges that contribute for clusters of this sort will require

evaluation of integrals of the form
ð
B3
r

WðrKr0Þdr0
Yf
jZ1

ð
R3=B3

r

Wðr0 KrjÞdrj
which are slightly more challenging than that of the

Appendix A. However, it appears that these are tractable,

and will be considered in future work.
6. Conclusions

An initial foray has been made into the theory of

embedded networks in this presentation, but it appears that

the general treatment is capable of giving far deeper insights

into network structure. It has been shown that some non-

trivial statistics of networks can be calculated with the

method, including an estimate of the gel point. Further

elaboration of the method promises to be rewarding.
Appendix A

The calculation of the P(r) factor that appears throughout

the equations is straightforward for Gaussian chains and is

included here for completeness. Expressed succinctly, the

probability that a chain has one end on the sphere S2r and the

other anywhere in the ball B3
rZB is

PðrÞZ

ð
B

WðrKr0Þdr0 (A1)

The probability distribution for the end-to-end vector for a

Gaussian chain is the traditional

WðrÞdrZ
g

p

� �3=2
expðKgr2Þdr; gZ

3

2
hr2i0 (A2)

with hr2i0 being the unperturbed mean square end-to-end

distance.

The integral is easily done to yield the exact expression

PðrÞZ
1

2
erfð2g1=2rÞK

1

ðpgÞ1=2r
½1KexpðK4gr2Þ�

� �
(A3a)

For small r, expansion of the error function gives

PðrÞZ 2
g

p

� �3=2
VðB3

r ÞC/

The first term is just twice as large at the probability for
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finding the end-to-end vector within VðB3
r Þ given one end at

the origin, as is deduced directly from W(r)dr. The

eccentricity of our configuration is responsible for the

factor of two.

For large r an asymptotic expansion is needed,

suggesting that the error function be converted to its

complement, to give

PðrÞZ
1

2
1K

1

ðpgÞ1=2r
Kerfcð2g1=2rÞC

expðK4gr2Þ

ðpgÞ1=2r

� �
(A3b)

For large r only the first two terms are important. But for

completeness, the asymptotic expansion for erfc gives

PðrÞw
1

2
K

1

2ðpgÞ1=2r
C

expðK4gr2Þ

2ðpgÞ1=2r
C/ (A4)

which tends to 1/2 as r/N, as it must. For any r, Q(r)Z
1KP(r).
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